skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zang, Lin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The known effects of thermodynamics and aerosols can well explain the thunderstorm activity over land, but fail over oceans. Here, tracking the full lifecycle of tropical deep convective cloud clusters shows that adding fine aerosols significantly increases the lightning density for a given rainfall amount over both ocean and land. In contrast, adding coarse sea salt (dry radius > 1 μm), known as sea spray, weakens the cloud vigor and lightning by producing fewer but larger cloud drops, which accelerate warm rain at the expense of mixed-phase precipitation. Adding coarse sea spray can reduce the lightning by 90% regardless of fine aerosol loading. These findings reconcile long outstanding questions about the differences between continental and marine thunderstorms, and help to understand lightning and underlying aerosol-cloud-precipitation interaction mechanisms and their climatic effects. 
    more » « less